
Citation: Bu, D.; Guo, S.; Guo, J.; Li,

H.; Wang, H. Low-Density

sEMG-Based Pattern Recognition of

Unrelated Movements Rejection for

Wrist Joint Rehabilitation.

Micromachines 2023, 14, 555. https://

doi.org/10.3390/mi14030555

Academic Editor: Bobak Mosadegh

Received: 13 December 2022

Revised: 16 February 2023

Accepted: 25 February 2023

Published: 27 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

micromachines

Article

Low-Density sEMG-Based Pattern Recognition of Unrelated
Movements Rejection for Wrist Joint Rehabilitation
Dongdong Bu 1 , Shuxiang Guo 1,2,* , Jin Guo 1,2,*, He Li 1 and Hanze Wang 1

1 School of Life Science, Beijing Institute of Technology, Beijing 100081, China
2 Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry

and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
* Correspondence: guoshuxiang@bit.edu.cn (S.G.); guojin@bit.edu.cn (J.G.); Tel.: +86-186-0020-0326 (S.G.)

Abstract: sEMG-based pattern recognition commonly assumes a limited number of target categories,
and the classifiers often predict each target category depending on probability. In wrist rehabilitation
training, the patients may make movements that do not belong to the target category unconsciously.
However, most pattern recognition methods can only identify limited patterns and are prone to be
disturbed by abnormal movement, especially for wrist joint movements. To address the above the
problem, a sEMG-based rejection method for unrelated movements is proposed to identify wrist
joint unrelated movements using center loss. In this paper, the sEMG signal collected by the Myo
armband is used as the input of the sEMG control method. First, the sEMG signal is processed
by sliding signal window and image coding. Then, the CNN with center loss and softmax loss is
used to describe the spatial information from the sEMG image to extract discriminative features and
target movement recognition. Finally, the deep spatial information is used to train the AE to reject
unrelated movements based on the reconstruction loss. The results show that the proposed method
can realize the target movements recognition and reject unrelated movements with an F-score of
93.4% and a rejection accuracy of 95% when the recall is 0.9, which reveals the effectiveness of the
proposed method.

Keywords: surface electromyography (sEMG); wrist joint rehabilitation training; unrelated
movements rejection; convolutional neural network (CNN); autoencoder (AE)

1. Introduction

The loss of one side of upper limb mobility function and sensory information hampers
the activities of daily living (ADL) for hemiplegic patients [1]. Many clinical studies have
shown that the plasticity of the central nervous system can restore the function of the
injured central nervous system. This remodeling can be strengthened and consolidated
through continuous motor relearning to help the functional repair and reconstruction of
the neuromuscular system. Therefore, appropriate rehabilitation training can help patients
recover their motor function to a certain extent. The delay of intervention therapy will
affect patients’ affected side functional capability restoration and increase rehabilitation
duration [2,3]. Bilateral rehabilitation training is considered to be an effective strategy
for the rehabilitation of hemiplegic patients [4]. The maximum latency of 300ms was
recommended for sEMG-based pattern recognition method [5]. The sEMG-based pattern
recognition method mainly finds the internal information of multi-channel sEMG signals
through feature learning, which assumes that the internal information of sEMG signals for
the same movements are similar, but the internal information of sEMG signals for different
movements are different [6]. Therefore, the upper limb intention recognition with high
accuracy and reliability is an important part of the exoskeleton control system [7], especially
for remote monitoring which needs a more efficient and intelligent framework to decode the
subject’s intention. sEMG signals can directly reflect the activation of superficial muscles
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with rich limp motion control information. In recent years, sEMG signal as the exoskeleton
control signal source has been widely applied to a rehabilitation estimation [8–10], human
intention prediction [11–17], and rehabilitation robot control [18–23].

However, in practical rehabilitation training, there are still great limitations in clinical
application, such as multi-user difference, electrode offset, unrelated movements interfer-
ence, and muscle crosstalk, which are important factors restricting the practicability of
sEMG pattern recognition methods. Many studies reveal that deep learning with CNN
has great advantages in mining information [24,25]. For the interference of the unrelated
movement, sEMG is very sensitive to muscle contraction, and slight changes in upper
limb movements may cause interference with the exoskeleton control system. Because
the signals of unrelated movements are not trained by the classifier, the classifier will
inevitably make wrong decisions. Therefore, these unrelated movements will cause the
system to provide incorrect instructions, which may reduce the user experience and also
cause security accidents. In recent years, many researchers have studied this problem, and
the existing solutions can be roughly divided into three methods: domain-based methods,
probability-based methods, and reconstruction-based methods. These studies mainly de-
vise a filtering method that can only identify target samples and remove unrelated samples.
Q. Ding et.al [26]. proposed methods to reduce or eliminate the impacts of three types
of daily interferences on myoelectric pattern recognition, that is, outlier motion, muscle
fatigue, and electrode doffing/donning to reveal the potential of the adaptive incremental
hybrid classifier for myoelectric pattern recognition strategy in the development of clinical
myoelectric prostheses. J.W. Robertson et.al. [27] found that confidence-based rejection im-
proves usability outcomes for support vector machine-driven myoelectric control. However,
the above research on the rejection of unrelated samples often assumes that the distribution
of unrelated samples and target samples is significantly different, so a relatively simple
method can be used to distinguish it.

The unrelated movements are unpredictable and often very similar to the target
movements, especially for wrist rehabilitation training. Therefore, the rejection of wrist-
joint-unrelated movements is of interest to this paper. L. Wu et al. [28] developed a robust
myoelectric control method for rejecting novel/unknown patterns based on high-density
surface electromyogram (HD-sEMG) signals, which enhanced the robustness of the myo-
electric pattern recognition systems. There are many small and concentrated muscle groups
in the forearm, so the sEMG signal is greatly affected by muscle crosstalk. Because of the
synergetic effect of these muscles, some small unrelated movements will greatly affect the
accuracy of wrist motion recognition. In addition, considering the requirements of remote
rehabilitation, it is necessary to combine sEMG acquisition equipment with upper limb
exoskeleton equipment to form a portable upper limb rehabilitation system. To mine avail-
able information differences between target movement samples and unrelated movement
samples and meet the requirements of a remote wearable exoskeleton rehabilitation system,
the main problem of this paper is to solve the wrist joint unrelated movements interference
and improve the robustness of wrist joint movement recognition. In this paper, aiming
at low-density sEMG signals, a convolutional neural network (CNN) with autoencoder
(AE) hybrid neural network structure with softmax loss and center loss (CNN-AE-SC) is
proposed to achieve upper limb wrist movements classification and unrelated movements
rejection. The hybrid network consists of two parts: the CNN network and the AE net-
work. The CNN with central loss and softmax loss is trained to extract the deep features
of the sEMG signal, whereas the AE network is applied to obtain the reconstructed loss
to reject unrelated movements, thus realizing accurate rejection of dynamic and complex
unrelated movements.

The rest of the paper is organized as follows. In Section 2, the experimental protocol
and methods are described, which mainly include signal processing and image encoding,
discriminative features extraction, unrelated movements rejection module, and evaluation
criteria. In Section 2, the results and discussion of the study are reported. Finally, the
conclusion is presented in Section 4.
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2. Methods
2.1. System Overview

Bilateral upper limb rehabilitation is a rehabilitation training strategy in which the healthy
side drives the affected side to perform synchronous movements [4]. In a previous study
by our research group, a gear-driven powered exoskeleton device was developed [8–10]. As
shown in Figure 1, the sEMG signals for different upper limb movements are collected. After
signal preprocessing and feature extraction, the features are input into the trained model
to achieve pattern recognition. The recognition results are used to control the upper limb
exoskeleton worn on the affected limb. Finally, the exoskeleton assists the upper limb in
performing desired movements according to the motion intention of the subjects.
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Accurate and reliable motion intention perception and prediction is the key to the
exoskeleton control system, especially for remote monitoring. In this paper, the rejection
of unrelated movements is considered to achieve rehabilitation training with high accu-
racy and reliability. The proposed method overview is shown in Figure 1b, which mainly
includes sEMG image encoding, discriminative features extract module, and unrelated
movements rejection module. The method proposed in this paper is based on the assump-
tion that although the signals between the wrist joint target movements and unrelated
movements are similar, these movements are activated by different muscle combinations.
Therefore, the deep spatial features of the sEMG images extracted from these movements
are also different. First, the sEMG signal is processed by a sliding signal window and image
coding, and then CNN is used to extract deep discrimination features from these sEMG
images. CNN is also used to predict the possible target category of the sample combined
with the center loss and softmax with cross-entropy loss, and then the AE network is
trained to reject samples higher than the set threshold by calculating reconstruction error.
If the reconstruction error is below a threshold, it is considered that the sample belongs
to the target movements, and the movements category is the prediction result of CNN;
If the reconstruction error is above the threshold, the sample is considered as unrelated
movements and rejected. These steps are introduced in detail below.

2.2. sEMG Dataset

The sEMG data contains two distinct sub-datasets in this paper, which are The NinaPro
DB5 [29] dataset and NewMyo dataset. The NinaPro DB5 dataset, recorded with the
Myo Armband, contains data from 10 able-bodied participants performing a total of
53 different movements (including neutral which denotes resting state) divided into three
exercise sets. The NewMyo dataset is collected from two able-bodied subjects in this paper
(one male and one female; right-hand; age from 22 to 32). The experimental content was
introduced to each subject in detail, and each subject signed the informed consent. All
the experimental procedures are approved by the Institutional Review Board (IRB) in the
faculty of Engineering Kagawa University (Ref. No. 01-011 from February 2020), which
follows the ethical principle of declaration of Helsinki.

The experimental scheme adopted in this paper is shown in Figure 2. sEMG signals are
collected using the Myo armband (Thalmic Labs Inc. Kitchener, Ontario, Canada), which
is a commercially available device with eight equidistance sEMG sensors that transfers
the data through a Bluetooth low-energy connection to the computer. The Myo armband
sensors distribution is shown in Figure 2a, in which the electrode with the LED light and
Myo logo that shows the sync state is channel 4, followed by channel 5 in a clockwise
direction and channel 3 in a counterclockwise direction. Limited by the number of Myo
armbands, the red dotted line frame is the main muscle group of wrist joint motion,
including brachioradialis, flexor carpi radialis, extensor carpi radialis, palmaris longus,
flexor carpi ulnaris, and so on. The initial position of channel 4 is placed about 2 cm away
from the right elbow joint, which is located in the brachioradialis muscle. The real-time
sEMG data at 200 Hz can be acquired through the software development kit (SDK) of
the Myo armband. The Myo armband includes a 50 Hz notch filter which eliminates
the power-line interference (50 Hz) [30]. The subjects were asked to perform 12 different
movements, including seven target movements and five rejection movements which are
highly similar to the sample signal of the target movements, as shown in Figure 2b,c.
Seven target movements include wrist pronation (T1)/supination (T2) (axis: little finger),
wrist extension (T3)/flexion (T4), wrist radial deviation (T5)/ulnar deviation (T6), and
neutral. The five rejection movements include the abduction of all fingers (R1), fingers
flexed together in a fist (R2), wrist pronation (R3)/supination (R4) (axis: middle finger),
and wrist extension with closed hand (R5). The data collection scheme strictly replicated
the scheme from Ninapro DB5. The subjects were asked to perform the movements with
the right hand for six repetitions. Each movement repetition lasted 5 s and was followed by
3 s of rest to avoid muscular and mental fatigue of the subjects.
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Figure 2. Experimental devices and data acquisition scheme: (a) Thalmic Myo armband and
schematic diagram of the experimental data acquisition; (b) The seven target movements; (c) The five
unrelated movements.

For the NinaPro DB5 dataset, the second exercise set is of particular interest to this
paper. The first eight-channel sEMG signals of seven target movement signals and five
unrelated movement signals related to this study are obtained as shown in Figure 2b,c. The
purpose of this paper is to achieve wrist target movements classification and unrelated
movements rejection based on the low-density sEMG signals. Considering the robustness of
the model, the sEMG signals of each target motion for 12 recruiters are randomly sampled
in the proportion of 60%, 20%, and 20% to form the training dataset, verification dataset,
and test dataset depending on target motion categories. The training dataset is used to
train the model. The validation dataset is used to calculate the average reconstruction error
of target movement samples. The test data consists of the test dataset and all unrelated
movement samples, which are used to evaluate the performance of the model proposed in
this paper.

2.3. Data Segmentation and sEMG Image Encoding

The sEMG signal is collected through the Myo armband in this paper, which can be
regarded as a low-density array signal, including additional spatial information. CNN is
good at extracting spatial information. Therefore, this procedure preprocesses low-density
sEMG signals into images. First, the sliding windows are used to segment the multi-
channel sEMG signals into a series of overlapped analysis windows. Limited by real-time
requirements, the maximum latency of 300 ms was recommended in [31]. Therefore, the
window length and window step are set as 250 ms and 100 ms, respectively. Therefore,
sEMG is segmented into a series of sEMG window matrices of size 50 × 8. Then, the
amplitude mean and standard deviation of all the signals in the neutral state are calculated,
and the amplitude threshold method is used to filter each signal window signal to obtain
the active segment signal of the wrist joint. The threshold is defined as the sum of the mean
and three times the standard deviation of the neutral signal, as shown in the Equation (1).

Threshold = µneutral + 3σneutral (1)

where Threshold is the boundary threshold between the active segment and the neutral
segment, which is used to obtain signals of the muscle active segment. If the amplitude
of a window signal is above the Threshold, it can be considered as a muscle activity state.
The µstatic and σstatic denote the expectation and standard deviation of all neutral signals.

Then three time-domain (TD) features are extracted for the signals of muscle activity
state, that is, root mean square (RMS), mean absolute value (MAV), and waveform length
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(WL). They are calculated with Equations (2)–(4). The RMS, MAV, and WL are the most
commonly used TD features in motion pattern recognition [5,7,10,12,30], and they are
closely associated with the amplitude of sEMG, which can directly reflect the intensity of
muscle contraction with low computational complexity. The studies [7,28,32] also showed
that the combination of TD features and a small-scale CNN could reach satisfactory control
performance. Therefore, the CNN combined with three time-domain features is applied
in this paper with the advantages of simple network structure, less computation, and
excellent results.

RMS =

√√√√ 1
N

N

∑
n=1

x2
n (2)

MAV =
1
N

N

∑
n=1
|xn| (3)

WL =
N

∑
n=2
|xn − xn−1| (4)

where xn denotes the value of the nth point for each window signal. Therefore, each window
signal belonging to muscle activity is transformed into a 3× 53× 8 feature matrix as shown
in Figure 3, which can directly represent the state of muscle activity.
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2.4. The Discriminative Feature Extraction Network

Many studies [6,15,24–30] have verified the effectiveness of the convolution neural
network for mining the internal information of sEMG signal. In this procedure, CNN is
used to extract discriminative features from low-density sEMG images. The input of CNN
is the sEMG feature images. This module makes two contributions: one is to provide AE
with the deep discriminative features of sEMG signals, and the other is to identify target
movements. The architecture of the CNN developed in this paper is shown in Figure 4. This
CNN contains six layers, including three convolutional layers, two fully-connected layers,
and an output layer. Three 2D convolution kernels (16× 2 filter with a stride of 2 and a
padding of 0, 8× 3 filter with a stride of (2, 1) and a padding of (2, 1), and 3× 3 filter with
a stride of 1 and a padding of (1, 1)) are used to process the sEMG images for the first three
convolution layers in turn, and the convolution layer activation function is LeakyReLU
activation. During training, the dropout rate between Layer4 and Layer5 is set to 20% to
prevent model overfitting. The adaptive moment estimation (Adam) algorithm is adopted
with the batch size set to 32 to train the network. We optimized the network using the
training samples for 200 epochs with a learning rate of 0.0001. The trained CNN is used for
extracting discriminant features, and the parameters are fixed during the training of the
AE. The center loss and softmax loss are applied to optimize the network, which makes the
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deep characteristics of the fifth layer output of the network discriminative. Generally, only
softmax loss is used for CNN model training, as shown in Equation (5).

Lsoftmax = − 1
N

N

∑
i=1

log
exp(x[class])
∑m exp(x[m])

= − 1
N

N

∑
i=1

log
ewyi

Txi+byi

∑M
m=1 ewmTxi+bm

(5)

where xi ∈ Rd, and yi denote deep features and label of the ith record, respectively. wm
is the mth column of the parameters W = [w1, w2 . . . , wm] ∈ Rd×m. b ∈ Rc is the bias. N
and M denote the length of mini-batch samples and the number of categories, respectively.
The softmax with cross-entropy loss is good at learning inter-class information, which
describes the distance of two probability distributions [33]. For the multi-classification
task, softmax activation can map the deep features to a category probability distribution,
and cross-entropy can describe the loss between real label value and predicted probability.
The lower the softmax with cross-entropy loss, the better separability of deep features.
However, the CNN trained only with softmax loss (CNN-AE-S) is more interested in the
accuracy of the prediction probability for correct labels while ignoring the differences of
other incorrect labels, resulting in the scattered distribution of learned features. That is, the
optimization of intra-class distance is relatively weak, resulting in the poor discriminant
performance of the model. In general, especially for a very similar sample distribution,
small intra-class differences and large inter-class differences need to be considered for
model training. Therefore, inspired by A. Farzaneh et al. [33], the center loss combined
with the softmax loss is used to train the network. According to [33], the center loss can be
calculated as shown in Equations (6)–(10).

Lcenter = −
1

2N

N

∑
i=1
‖xi − cyi

‖2
2 (6)

where cyi
∈ Rd is the yith

class center of deep features. cyi
will be updated with the change

of deep features. Therefore, it will be inefficient and even impractical to average the features
of each class in each iteration for all training datasets. Therefore, in this paper, cyi

is updated
using a mini-batch sample for each iteration. And considering mislabeling samples caused
by large disturbances, the scalars α (restricted in [0, 1]) are used to control the learning rate
of center cyi

. Therefore, the gradients of Lcenter for xi and the update of cyi
are defined as:

∂Lcenter

∂xi
= xi − cyi

(7)

∆cj =
∑N

i=1 δ(yi = j) ·
(
cj − xi

)
1 + ∑N

i=1 δ(yi = j)
(8)

ct+1
j = ct

j − α · ∆ct
j (9)

When yi is different from j of cj (that is, δ(condition) = 0), cj will not be updated. Conversely,
δ(condition) = 1 if yi is the same as j of cj, cj will be updated. Therefore, the loss function in
this paper is defined as weighted the softmax loss and center loss as shown in Equation (10).
The scalar λ is used to balance two loss functions. The softmax loss is used to increase
inter-class spacing, and center loss is used to reduce intra-class spacing, thus making the
deep features more discriminative.

Loss = Lsoftmax + λLcenter = −
1
N

N

∑
i=1

log
ewyi

Txi+byi

∑M
m=1 ewmTxi+bm

+
λ

2N

N

∑
i=1
‖xi − cyi

‖2
2 (10)
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2.5. Unrelated Movements Rejection Module

In this part, the AE network is trained to reject any samples that do not belong to the
target movements by calculating reconstruction error. The CNN model developed in this
paper can recognize target movements well, but it does not recognize the performance to
reject unrelated movements. The AE network framework adopted by the proposed method
is shown in Figure 5. The network adopts a mirror architecture, which can be divided
into an encoder and a decoder. The encoder compresses the input into a low dimensional
feature space, which only retains the main mode of the input data, and then the decoder
can recover the raw data. If the distribution of the input and training data is different, then
there are obvious differences in the output of the encoder, and the decoder is unable to
recover the input data causing large reconstruction errors. The mean square error (MSE)
loss is used to train AE. The input of AE is the layer5 output (512× 1) of the CNN network
on the training dataset of the target movement samples. The Adam algorithm with a
mini-batch (set to 32) is adopted to optimize the parameters in the network. The learning
rate is set as 0.0001 with the 1000 epochs to train the AE network. To test the discriminant
network, the Pearson correlation (PC) [16] is applied to measure the difference between the
input data and the reconstructed data as shown in Equation (11).

ρ(xi, yi) =
cov(xi, yi)

σ(xi)·σ(yi)
=

∑J
j=1
(
xij − xij

)(
yij − yij

)
√

∑J
j=1
(
xij − xij

)2
√

∑J
j=1

(
yij − yij

)2
(11)

where xij and yij represent the jth dimension values of the ith input vector xi and the
reconstructed vector yi, respectively, and xij and yij denote average of xi and yi, respectively.
This distance can normalize the high-dimensional vector and calculate the difference. When
an unknown sample is input into the model trained in this paper, the discriminative features
of the sample are extracted through the CNN, and then these features are input into the
trained AE network to calculate the reconstruction error. If the reconstruction error is
below the threshold, it is considered that the sample belongs to the target movements,
and the motion category is predicted by the CNN. If the reconstruction error is above the
threshold, the sample is considered as unrelated movements and rejected. Therefore, it is
necessary to select an appropriate reconstruction error threshold to distinguish between
target movements and denial movements. Therefore, a prior recall factor is defined, and
when the mean reconstruction error on the verification dataset of the target samples reaches
the prior recall, this reconstruction error is recorded. Finally, this value is defined as the
threshold to distinguish between movements and unrelated movements.
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2.6. Evaluation Criteria

In this paper, accuracy (Acc) [5], F-score, and receiver operating characteristic (ROC)
curve are used to verify the performance of the proposed method. The corresponding
equations are defined as follows.

Acc =
TP + TN

TP + FP + TN + FN
× 100% (12)

Precisionj =
TPi

TPi + FPi
× 100% (13)

TPRj = Recallj =
TPi

TPi + FNi
× 100% (14)

FPRj =
FPi

TNi + FPi
× 100% (15)

F− score =
2× Recallj × Precisionj

Recallj + Precisionj
× 100% (16)

where the subscript j represents the index of different movements, j = 1, 2, . . . , 7 corre-
spond to the T1–T6 and neural movements, respectively. As shown in Equations (12)–(16),
TP represents true positive, FP represents false positive, TN represents true negative, and
FN represents false negative. The curve (ROC) indicates that the model is better at distin-
guishing unrelated samples. It is a binary classification problem to judge the target samples
and unrelated samples. False positive rate (FPR) represents the probability of the target
movement samples (FP) accounting for among all the samples whose prediction results
are unrelated movement samples; true positive rate (TPR) represents the probability of the
target movement samples predicted by model accounts for all target movement samples.
When TPR is 1 and FPR is 0, the accuracy of the model for secondary classification reaches
100%. The area under the curve (AUC) further quantifies the performance of the model
represented by the ROC curve. The AUC value is in the range of 0–1. Therefore, the larger
the AUC value, the higher the overall performance of the model.
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3. Experiment Results and Discussion

In this section, the model obtained through the proposed method is presented and
discussed. To verify the effectiveness of center loss, the visualization of deep features is
provided on the training dataset and we also discussed the influence of hyperparameter λ
on the model. To verify the performance of the model, the reconstruction error distribution
on the validation dataset and the reconstruction error distribution of all unrelated move-
ment samples are provided. Different evaluation indicators are adopted for quantitative
evaluation to compare the performance of different methods.

3.1. Influence of Different Hyper-Parameter λ

To verify that the center loss function is available for optimizing deep features to
make them separable and discriminative, the t-distributed stochastic neighbor embedding
(t-SNE) [34] is applied to reveal the distributions of the deep features with different λ values,
as shown in Figure 6a–i. Figure 6a shows the distributions of deep features trained only
with the softmax loss using the t-SNE visualization method. Although these deep features
have good separability in high-dimensions, the intra-class cluster capability of samples
is inadequate and even overlaps. Therefore, these features have poor discrimination and
may be unavailable and difficult for the rejection of unrelated movements. As shown
in Figure 6b–i, the two-dimensional deep features distribution of training samples is
shown when λ is 5× 10−6, 1× 10−5, 1.5× 10−5, 2× 10−5, 1× 10−4, 2.5× 10−4, 5.0× 10−4,
and 1 × 10−3, respectively. The hyperparameter λ impacts the model performance by
influencing the distributions of the deep features. It can be seen that the larger the λ value,
the smaller the intra-class spacing, that is, the more compact the deep features of each
category are extracted. The joint supervision loss is used to train CNN, which reduces
the inter-class spacing of deep features for samples, and the intra-class spacing is also
effectively reduced simultaneously, which shows the effectiveness of center loss for the
distribution of deep features where λ denotes the weight of center loss. Figure 6a–i shows
that the deep feature distribution is affected by the hyperparameter λ, which is crucial to
the rejection performance of unrelated movements.

As shown in Figure 7, the mean F-score and mean accuracy of all subjects of the training
model are calculated with λ value defined as 5 × 10−6, 1 × 10−5, 1.5 × 10−5, 2 × 10−5,
1 × 10−4, 2.5 × 10−4, 5.0 × 10−4, and 1 × 10−3, respectively. As shown in Figure 7a,b,
the green curve indicates the results of the mean f-score and accuracy when the recall is
defined as 0.9, and the blue curve indicates the experimental results of the mean f-score and
accuracy when the recall is defined as 0.85. When λ = 0, only the softmax loss is considered
to train the model. The mean F-score and mean accuracy are 0.825 and 0.822, corresponding
(recall = 0.9) with the worst performance. When λ > 0 (considering the center loss), the
model performance is improved, and the model performance will change according to
the value of λ. In addition, the increase of λ improves the rejection performance of the
model, but the mean f-score and accuracy are reduced with the increase of λ. This is due to
the large λ that may greatly compress the intra-class spacing, and CNN is not sensitive to
the small differences between samples. Therefore, an appropriate λ is important for deep
feature extraction and rejection of unrelated motions, which should be defined according
to the practical application. In this paper, λ is defined as 0.00025, which shows better the
performance of the model.
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3.2. Performance of the Trained Model

In this section, the threshold is used to distinguish the target movements from the
unrelated movements, and the threshold is determined according to the reconstruction
error. Specifically, first a recall factor value for all target movements is preset, then the
numerical value is recorded when the reconstruction error of all target movement classes
in the verification set reaches the recall rate, and this value is regarded as the rejection
threshold of each class. The ROC curve is used to estimate the performance of the proposed
method for the target movements and rejection movements under different thresholds.
Furthermore, the area under the curve (AUC) further quantifies the performance of the
model represented by the ROC curve. The larger the AUC value, the higher the overall
performance of the classification model. Then, the average recognition accuracy and
F-score of the trained model are calculated in the test dataset and unrelated samples
depending on the preset recall factor. The comparison methods are performed: Support
vector machines(SVM), linear discriminant analysis (LDA), and LDA with Mahalanobis
distance (LDA-MD), CNN-AE-S, CNN-AE-SC.

A larger recall factor will make the threshold of all target movements categories larger,
and more reconstruction errors in target movements samples are lower than the threshold.
The smaller recall factor will reduce the threshold value of the target movements category,
inevitably reducing the target movements recognition performance, but it will strengthen
the rejection performance of unrelated movements. The reconstruction error of the target
motion is relatively small, whereas the reconstruction error of the unrelated motion samples
is significantly higher than that of the target category samples. As shown in Figure 8a, the
reconstruction loss distribution is described of target movements on the validation dataset,
and Figure 8b shows the reconstruction loss distribution of all unrelated movements in the
test dataset by the trained model (λ = 0.00025). When the recall of the validation dataset
achieves 0.80, 0.85, and 0.90, the corresponding thresholds are obtained, which are 0.0170,
0.0194, and 0.0235, respectively. As shown in Figure 8a,b, it is apparent that most of the
sample reconstruction errors in the verification dataset are distributed on the left side of the
threshold, whereas most of the reconstruction errors of unrelated samples are distributed
on the right side of the threshold. Therefore, there is a threshold to distinguish target
movements and unrelated movements.
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Figure 8. Reconstruction loss distribution achieved by the trained model: (a) Reconstruction loss
distribution on the validation dataset; (b) Reconstruction loss distribution of all unrelated movements;
(c) Pearson correlation(PC) distribution for each movement on the test dataset and all unrelated
samples when the recall is 0.85; (d) Pearson correlation(PC) distribution for each movement of test
dataset and all unrelated samples when the recall is 0.9.

Figure 8c,d show the PC distribution for each movement, that is, the reconstruction
error distribution of each category sample after the trained model on the test dataset when
the recall of the model is 0.85 and 0.9, respectively. The blue dotted line indicates the
rejection performance of the unrelated movements, which are 98.3% and 95.0%. Therefore,
an appropriate threshold can effectively segment the target and unrelated samples.

As shown in Figure 9, The true positive rate (TPR) and false positive rate (FPR) are
obtained under different thresholds, and their ROC curves are described. The proposed
method reaches the maximum AUC value of 94.3%, which is- higher than that from the
CNN-AE with softmax loss (the AUC value of 92.1%) when the recall is 0.9. Therefore, there
is a threshold that can obtain the highest TPR while keeping the FPR very low, making
the target movements more distinguishable from unrelated movements. In addition, the
discriminative deep features combined with simple AE can achieve rejection performance.
According to Figures 6 and 8, the center loss can compact intra-class variations and enlarge
inter-class differences to improve rejection performance.
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Figure 10 shows the confusion matrices by the proposed method (λ = 0.00025) and
CNN-AE-S (λ = 0) when the recall factor is defined as 0.85 and 0.9, respectively. The
confusion matrices averaged over all subjects with the proposed method on the test dataset
are shown in Figure 10a,b. When the recall is 0.9, the mean classification accuracy is
92% and the rejection performance of unrelated motions reached 95% by the CNN-AE-SC
method, which is higher than that (82.2% and 71.6%) from the CNN-AE-S. When the recall
is 0.85, the mean classification accuracy is 92% and the rejection performance of unrelated
motions reached 95% by the CNN-AE-SC method, which is higher than that (82.2% and
71.6%) from the CNN-AE-S. According to Figure 10, for the model trained with the CNN-
AE-SC method, all misclassifications of target motions (A1–A6) are determined to be the
unrelated pattern (R1–R5) by mistake, which leads to no response of the control system.
However, for the model trained with the CNN-AE-S, there are some misclassifications
of target movements determined to other target movements by mistake, which leads to
abnormal movement of the control system because of the wrong recognition.

To further compare the performance of the proposed methods, Table 1 reveals the
mean recognition accuracies and rejection performance for each movement when the recall
is defined as 0.8, 0.85, and 0.9. As shown in Table 1, although the traditional machine
learning methods of SVM and LDA achieve the highest recognition performance (96.9%
and 86.1%, respectively) for target motions, they cannot reject any unrelated samples
and they finally misclassify them as target motion tasks. However, other methods are all
capable of rejecting unrelated samples depending on the recall factor on the verification
dataset. These rejections also affects the ability of the model to recognize the target samples.
When the recall factor is set to 0.8, that is, the model has a poor ability to recognize target
action, the recognition accuracies of target motion obtained by the LDA-MD, CNN-AE-
S, CNN-AE-SC all drop to about 80%, whereas the rejection performance of unrelated
motion are 84.0%, 84.3%, 99.7% by these methods, respectively. It is worth noting that the
rejection performance of unrelated motion by the CNN-AE-SC is obviously better than
the other two methods. Then, when the recall factor is increased to 0.85, the recognition
performance of all methods is correspondingly improved to about 85%, whereas the average
rejection performance of unrelated movements obtained by the LDA-MD (72.7%), CNN-
AE-S (79.3%), and CNN-AE-SC (98.3%) methods slightly drop. The rejection performance
of unrelated motion by the CNN-AE-SC method is obviously better than the other two
methods. Finally, when the recall factor is defined as 0.9, the recognition performance of all
methods for the target movements are correspondingly improved to about 90%, whereas
the average rejection performance of unrelated movements by the LDA-MD (59.0%), CNN-
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AE-S (71.7%), CNN-AE-SC (95.0%) methods drop sharply. it can be seen that with the
increase of the recall factor, the proposed method could always maintain better rejection
ability for unrelated movements. Therefore, the proposed method is available, and its
performance is significantly better than the other two methods, which could be applied
to the real-time control of the upper limb exoskeleton tele-rehabilitation robot system.
However, all of the above processing flows are performed offline, but how to apply the
research framework in this study to the online stage to control the exoskeleton device is a
consideration in our future work.
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Table 1. Recognition accuracies of target and unrelated movements and F-score when the recall factor
is set to 0.8, 0.85, and 0.9, respectively.

Recall Method

Target
Movements Unrelated Movements

Averaged R1 R2 R3 R4 R5

Acc (%) (%) Rejection Performance (%) Averaged
F-Score (%)

SVM 96.9 - - - - - - -
LDA 86.1 - - - - - - -

0.8
LDA-MD 77.4 84.0 68.3 96.7 85.0 76.7 93.3 78.5

CNN-AE-S 80.4 84.3 88.3 96.7 86.7 78.3 71.7 83.7
CNN-AE-SC 82.4 99.7 100 100 100 100 98.3 92.8

0.85
LDA-MD 82.2 72.7 56.7 95.0 65.0 56.7 90.0 75.5

CNN-AE-S 85.4 79.3 85.0 93.3 81.7 68.3 68.3 82.5
CNN-AE-SC 85.2 98.3 98.3 98.3 98.3 100 96.7 93.2

0.9
LDA -MD 85.4 59.0 45.0 90.0 45.0 33.3 81.7 72.2
CNN-AE-S 89.8 71.7 73.3 88.3 76.7 63.3 56.7 83.8

CNN-AE-SC 90.0 95.0 96.7 96.7 93.3 98.3 90.0 93.7

The number of samples in different reconstruction error intervals are shown in
Figure 11a,b. The reconstruction loss distribution is achieved by the CNN-AE-S method
in the verification dataset and unrelated samples. Compared with Figure 8a,b, although
some target movement sample reconstruction errors and unrelated movement sample
reconstruction errors can be correctly distinguished, many sample reconstruction errors
are wrongly distinguished, indicating that samples are wrongly judged. When the recall
coefficient is defined as 0.8, that is, the discrimination threshold is small (threshold = 0.0170,
λ = 0.00025), the average recognition accuracy of target samples by the CNN-AE-S method
and CNN-AE-SC method drops to about 80%. The average accuracy of rejection of un-
related samples by CNN-AE-S methods is 84.3% with an average F-score of 83.7%. The
average rejection accuracy is 99.7% for unrelated samples by the CNN-AE-SC method
proposed in this paper, with an average F-score of 92.8%. When the recall is defined as 0.9,
that is, the discrimination threshold is large (threshold = 0.0235, λ = 0.00025). The average
recognition accuracy of the two methods for target samples correspondingly increases to
about 90%, but the rejection performance of the CNN-AE-S method for unrelated samples
drops sharply to 71.7% with an average F-score of 83.8%. The proposed method still has a
high rejection performance with an average accuracy of 95.0% and an average F-score of
93.7%. Therefore, the CNN-AE-SC method is superior to the CNN-AE-S method. Although
the recognition accuracy of the model for target samples is improved with the increase in
recall rate, the rejection performance for unrelated samples will decrease accordingly. How-
ever, the model trained with the proposed method has a higher recognition accuracy (90.0%)
for target samples and a higher rejection performance (95.0%) for unrelated samples.

The sEMG signal is very sensitive to muscle contraction, and small unrelated move-
ments can introduce interference to the sEMG control system. The unrelated movements
will cause the system to execute wrong instructions, which may cause safety accidents
while reducing user experience. As shown in Table 2, some comparison results of differ-
ent methods are summarized. In summary, the existing solutions could be divided into
domain-based methods [26] and refactoring-based methods [28], etc.. However, the above
work of rejecting irrelevant actions often assumes that the irrelevant actions and target
actions are significantly different, so a relatively simple method can be used to distinguish
them. Q. Ding [26] constructed an adaptive incremental hybrid classifier by combining one-
class support vector data description and multi-class LDA with an average target motions
recognition rate of 91.7% and unrelated motions rejection rate of about 90.0%. However, in
actual application situations, unrelated actions are unpredictable and often very similar to
target actions. Y. Zhang [28], based on a high-density EMG signal, proposed a myoelectric
control method to alleviate the interference brought by novel motion tasks with an average
target motions recognition rate of 88.6% and the unrelated motions rejection rate of 96.4%.
To resolve the above problems, this paper proposes a method for rejecting unrelated motion
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based on low-density EMG signals that can be used for portable rehabilitation of the wrist
joint at home. The results show that the average recognition rate of the method proposed in
this paper for the target motion is about 90.0%, and the rejection rate for irrelevant motion
can reach 95.0%. Compared with [26] and [28], this method realizes the unrelated motion
rejection based on low-density sEMG signals when the unrelated motion and target motion
signals are very similar.
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Table 2. The comparison with the related studies.

sEMG
Channels

sENG
Acquisition

Performance
Target Motions
Recognition (%)

Unrelated Motions
Rejection (%)

Q. Ding [26] 5 Delsys, Trigno 91.7 90.0 ± 5
Y. Zhang [28] 6 × 8 High-density sEMG 88.6 96.4

Z. Bi [32] 6 × 8 Wearable EMG Bridge 94.0 -
This work (recall = 0.9) 8 Thalmic Myo armband 90.0 95.0

4. Conclusions

The performance of rejecting unrelated samples is very important for the sEMG-
controlled exoskeleton rehabilitation robot. In this paper, a sEMG-based pattern recognition
method for wrist rehabilitation is proposed to improve the anti-interference performance
of unrelated wrist movements. First, the method uses the idea of metric learning to
extract deep distinguishing features from low-density sEMG feature images. Then the
automatic encoder is used to calculate the reconstruction error to distinguish the unrelated
samples and target samples. Compared with only using softmax loss to train the model, the
proposed method enables the model to have a higher recognition accuracy (90.0%) for target
samples with a higher rejection performance (95.0%) for unrelated samples, which shows
that the proposed method is a viable method to improve the robustness of sEMG-based
pattern recognition for exoskeleton rehabilitation robots. In the future, we will further
consider the influence of the inter-subject difference of sEMG to model performance and
apply it to the real-time control of the upper limb exoskeleton rehabilitation robot system.
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